Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(46): e36077, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986383

RESUMO

Scar physique refers to the abnormal repair of skin injury in some people, which may easily lead to keloid or hypertrophic scar. However, the mechanism of scar physique is still unclear. GSE108110 was obtained from the gene expression omnibus database. Differently expression genes (DEGs) between normal skin tissue of non-scar physique individuals and normal skin tissue of scar physique individuals were screened by R package "limma". Weighted gene co-expression network analysis was performed to find highly relevant gene modules. Functional annotation of DEGs was made. Protein-protein interaction network was constructed, and the identification and analysis of hub DEGs were performed, including identification of hub DEGs associated with scar diseases, MiRNA of hub DEGs prediction, and functional annotation of miRNA. A total of 1389 up-regulate DEGs and 1672 down-regulate DEGs were screened. weighted gene co-expression network analysis analysis showed that the dendrogram and heatmap were used to quantify module similarity by correlation. The associations between clinic traits and the modules were identified based on the correlation between module and scar physique. Eight common hub genes were obtained. The comparative toxicogenomics database shows common hub genes associated with scar tissue. Gene ontology and Kyoto encyclopedia of genes and genomes analysis were significantly enriched in "fibroblast growth factor receptor signaling pathway", "epidermal growth factor receptor signaling pathway", "G1/S transition of mitotic cell cycle", protein polyubiquitination", and others. The 8 hub genes might be involved in the development of scarring and used as early diagnosis, prevention and treatment of scar physique.


Assuntos
Cicatriz , MicroRNAs , Humanos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , MicroRNAs/genética , Biologia Computacional
2.
Org Biomol Chem ; 21(23): 4766-4769, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265113

RESUMO

An environmentally friendly and transition metal-free method for the annulation of α-bromocinnamaldehydes was established. 3-Formyl-imidazo[1,2-α]pyridines and pyrimidines were obtained in moderate to excellent yields. This approach features easily available starting materials, transition metal-free conditions, good functional group tolerance and operational simplicity.

3.
J Hepatocell Carcinoma ; 10: 429-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941998

RESUMO

Introduction: Hepatocellular carcinoma (HCC) was the sixth most prevalent cancer worldwide. Long non-coding RNA TGFB2-OT1 has been proven to mediate inflammation and autophagy in vascular endothelial cells. However, its function in HCC is still unknown. Methods: We analyzed the relationship between TGFB2-OT1 expression and the clinicopathological features of 202 HCC patients. RT-qPCR was used to analyze the TGFB2-OT1 expression in HCC cell lines and tissues. In vitro and in vivo assays were conducted to verify the effect of TGFB2-OT1 on the phenotype of HCC. RNA pull-down assays were applied to reveal the proteins binding to the TGFB2-OT1. Western-blot assays were conducted to analyze the protein expression in HCC cell lines. Results: TGFB2-OT1 was found to be highly expressed in HCC samples and hepatoma cells. TGFB2-OT1 expression was significantly associated with age (P = 0.001), cirrhosis (P = 0.003), tumor size (P < 0.001), tumor encapsulation (P = 0.029), tumor protruding from the liver surface (P = 0.040), and alpha fetoprotein (AFP, P < 0.001) levels. TGFB2-OT1 promoted proliferation, migration, invasion, and angiogenesis in HCC cells, both in vitro and in vivo. TGFB2-OT1 binds to ß-catenin and competitively impaired the binding of ß-catenin to GSK3ß, thus suppressing the phosphorylation of ß-catenin at Ser33, Ser37, and Thr41. Conclusion: TGFB2-OT1 is overexpressed in HCC and predicts the poor prognosis of HCC patients. TGFB2-OT1 impedes the phosphorylation of ß-catenin and acts as an alternative activator of the Wnt/ß-catenin pathway to promote the progression and angiogenesis of HCC.

4.
Mol Metab ; 63: 101540, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798238

RESUMO

OBJECTIVE: Emerging studies suggest that long non-coding RNAs (lncRNAs) play crucial roles in hepatocellular carcinoma (HCC). A rapidly increasing number of studies have shown that metabolic changes including lipid metabolic reprogramming play a significant role in the progression of HCC. But it remains to be elucidated how lncRNAs affect tumor cell metabolism. METHODS: Through analysis and screening of The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset, we found a novel lncRNA RP11-386G11.10 was overexpressed, related to prognosis, conserved and non-protein-coding in HCC and related to poor prognosis. Then, CCK-8, colony formation, Transwell invasion, wound healing assays were performed and nude mouse subcutaneous tumour formation and lung metastasis models were established to explore the effect of RP11-386G11.10 on HCC tumour growth and metastasis. Chromatography-mass spectrometry (GC-MS) and Nile red staining detected the effect of RP11-386G11.10 on lipid metabolism in HCC. Mechanistically, we clarified the RP11-386G11.10/miR-345-3p/HNRNPU signalling pathway through dual luciferase reporter, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays and identified ZBTB7A as a transcription factor of RP11-386G11.10. RESULTS: RP11-386G11.10 was overexpressed in HCC and positively correlated with tumour size, TNM stage, and poor prognosis in HCC patients. RP11-386G11.10 promoted the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistically, RP11-386G11.10 acted as a competing endogenous RNA (ceRNA) for miR-345-3p to regulate the expression of HNRNPU and its downstream lipogenic enzymes, leading to lipid accumulation in HCC cells and promoting their growth and metastasis. In addition, we identified ZBTB7A as a transcription factor of RP11-386G11.10. Moreover, HNRNPU promoted the expression of ZBTB7A in HCC cells, thereby increasing the transcriptional activity of RP11-386G11.10, and forming a positive feedback loop, ultimately leading continuous lipid accumulation, growth and metastasis in HCC cells. CONCLUSIONS: Our results indicated that the lncRNA RP11-386G11.10 was a novel oncogenic lncRNA that was strongly correlated with the poor prognosis of HCC. The ZBTB7A-RP11-386G11.10-HNRNPU positive feedback loop promoted the progression of HCC by regulating lipid anabolism. RP11-386G11.10 may become a new diagnostic and prognostic biomarker and therapy target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Lipídeos , Neoplasias Hepáticas/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo
5.
Front Physiol ; 11: 551318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192549

RESUMO

Myocardial ischemia-reperfusion (MI/R) injury is characterized by iron deposition and reactive oxygen species production, which can induce ferroptosis. Ferroptosis has also been proposed to promote cardiomyocyte death. The current study sought to define the mechanism governing cardiomyocyte death in MI/R injury. An animal model of MI/R was established by ligation and perfusion of the left anterior descending coronary artery, and a cellular model of IR was constructed in cardiomyocytes. ChIP assay was then conducted to determine the interaction among USP22, SIRT1, p53, and SLC7A11. Loss- and gain-of-function assays were also conducted to determine the in vivo and in vitro roles of USP22, SIRT1, and SLC7A11. The infarct size and pathological changes of myocardial tissue were observed using TCC and hematoxylin-eosin staining, and the levels of cardiac function- and myocardial injury-related factors of rats were determined. Cardiomyocyte viability and apoptosis were evaluated in vitro, followed by detection of ferroptosis-related indicators (glutathione (GSH), reactive oxygen species, lipid peroxidation, and iron accumulation). USP22, SIRT1, and SLC7A11 expressions were found to be down-regulated, whereas p53 was highly expressed during MI/R injury. USP22, SIRT1, or SLC7A11 overexpression reduced the infarct size and ameliorated pathological conditions, cardiac function, as evidenced by reduced maximum pressure, ejection fraction, maximum pressure rate, and myocardial injury characterized by lower creatine phosphokinase and lactate dehydrogenase levels in vivo. Moreover, USP22, SIRT1, or SLC7A11 elevation contributed to enhanced cardiomyocyte viability and attenuated ferroptosis-induced cell death in vitro, accompanied by increased GSH levels, as well as decreased reactive oxygen species production, lipid peroxidation, and iron accumulation. Together, these results demonstrate that USP22 overexpression could inhibit ferroptosis-induced cardiomyocyte death to protect against MI/R injury via the SIRT1/p53/SLC7A11 association.

6.
Mol Genet Genomic Med ; 8(6): e1245, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32309912

RESUMO

BACKGROUND: Tracheal injury could cause intratracheal scar hyperplasia which in turn causes benign tracheal stenosis (TS). With the increasing use of mechanical ventilation and ventilator, the incidence of TS is increasing. However, the molecular mechanisms of TS have not been elucidated. It is significant to further explore the molecular mechanisms of TS. METHODS: The repeatability of public data was verified. Differently expressed genes (DEGs) and most significant genes were identified between TS and normal samples. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed. The comparative toxicogenomics database were analyzed. TS patients were recruited and RT-qPCR were performed to verify the most significant genes. RESULTS: There exist strong correlations among samples of TS and normal group. There was a total of 194 DEGs, including 61 downregulated DEGs and 133 upregulated DEGs. GO were significantly enriched in mitotic nuclear division, cell cycle, and cell division. Analysis of KEGG indicated that the top pathways were cell cycle, and p53 pathway. MKI67(OMIM:176741), CCNB1(OMIM:123836), and CCNB2(OMIM:602755) were identified as the most significant genes of TS, and validated by the clinical samples. CONCLUSION: Bioinformatics methods might be useful method to explore the mechanisms of TS. In addition, MKI67, CCNB1, and CCNB2 might be the most significant genes of TS.


Assuntos
Redes Reguladoras de Genes , Estenose Traqueal/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional/métodos , Ciclina B1/genética , Ciclina B2/genética , Feminino , Humanos , Antígeno Ki-67/genética , Masculino , Pessoa de Meia-Idade
8.
J Cardiovasc Pharmacol ; 73(1): 27-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418242

RESUMO

The role of OPA1-related mitochondrial fusion in cardiac reperfusion stress has remained elusive. The aim of our study is to explore whether melatonin alleviates cardiac ischemia-reperfusion (IR) injury by modulating OPA1-related mitochondrial fusion. We found that melatonin reduced infarct area, sustained myocardial function, and suppressed cardiomyocyte death during cardiac reperfusion stress. Biological studies have revealed that IR-inhibited mitochondrial fusion was largely reversed by melatonin through upregulated OPA1 expression. Knocking down OPA1 abrogated the protective effects of melatonin on mitochondrial energy metabolism and mitochondrial apoptosis. In addition, we also found that melatonin modified OPA1 expression through the Yap-Hippo pathway; blockade of the Yap-Hippo pathway induced cardiomyocyte death and mitochondrial damage despite treatment with melatonin. Altogether, our data demonstrated that cardiac IR injury is closely associated with defective OPA1-related mitochondrial fusion. Melatonin supplementation enhances OPA1-related mitochondrial fusion by activating the Yap-Hippo pathway, ultimately reducing cardiac reperfusion stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Melatonina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , Via de Sinalização Hippo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Proteínas de Sinalização YAP
9.
Acta Cir Bras ; 33(4): 314-323, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29768534

RESUMO

PURPOSE: To evaluate the effects of single intravenous administration of Dexmedetomidine (DEX) on hemodynamics in rabbits. METHODS: A total of 32 New Zealand white rabbits were randomly divided into the control group (Group C), Group D1 (2.75 µg/kg), Group D2 (5.5 µg/kg), and Group D3 (8.25 µg/kg) to compare systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), central venous pressure (CVP), left ventricular systolic pressure (LVSP), left ventricular end-stage diastolic pressure (LVEDP), left ventricular developmental pressure (LVDP), +dp/dtmax, -dp/dtmax, and t-dp/dtmax at different time points. RESULTS: The levels of SBP, DBP, HR, LVSP, and LVEDP in Group D1, D2, and D3 were lower than that of Group C from T1 to T5 (P<0.05), but there was no significant difference at T6 and T7 (P>0.05). Compared with T0, the levels of SBP, DBP, HR, LVSP, LVEDP, and left arterial pressure (LAP) from T1 to T7 were decreased (P<0.05), but there was no significant difference in the other indexes (P>0.05). CONCLUSION: Dexmedetomidine can decrease blood pressure and heart rate in rabbits in a dose-dependent manner, but there is no effect on the myocardial systolic and diastolic function.


Assuntos
Dexmedetomidina/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Animais , Dexmedetomidina/sangue , Testes de Função Cardíaca , Ventrículos do Coração/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipnóticos e Sedativos/sangue , Masculino , Coelhos , Distribuição Aleatória , Valores de Referência , Reprodutibilidade dos Testes , Fatores de Tempo
10.
Acta cir. bras ; 33(4): 314-323, Apr. 2018. tab
Artigo em Inglês | LILACS | ID: biblio-886285

RESUMO

Abstract Purpose: To evaluate the effects of single intravenous administration of Dexmedetomidine (DEX) on hemodynamics in rabbits. Methods: A total of 32 New Zealand white rabbits were randomly divided into the control group (Group C), Group D1 (2.75 μg/kg), Group D2 (5.5 μg/kg), and Group D3 (8.25 μg/kg) to compare systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), central venous pressure (CVP), left ventricular systolic pressure (LVSP), left ventricular end-stage diastolic pressure (LVEDP), left ventricular developmental pressure (LVDP), +dp/dtmax, -dp/dtmax, and t-dp/dtmax at different time points. Results: The levels of SBP, DBP, HR, LVSP, and LVEDP in Group D1, D2, and D3 were lower than that of Group C from T1 to T5 (P<0.05), but there was no significant difference at T6 and T7 (P>0.05). Compared with T0, the levels of SBP, DBP, HR, LVSP, LVEDP, and left arterial pressure (LAP) from T1 to T7 were decreased (P<0.05), but there was no significant difference in the other indexes (P>0.05). Conclusion: Dexmedetomidine can decrease blood pressure and heart rate in rabbits in a dose-dependent manner, but there is no effect on the myocardial systolic and diastolic function.


Assuntos
Animais , Masculino , Ratos , Dexmedetomidina/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Valores de Referência , Fatores de Tempo , Distribuição Aleatória , Reprodutibilidade dos Testes , Dexmedetomidina/sangue , Testes de Função Cardíaca , Ventrículos do Coração/efeitos dos fármacos , Hemodinâmica/fisiologia , Hipnóticos e Sedativos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...